A Hopf Operad of Forests of Binary Trees and Related Finite-Dimensional Algebras

نویسنده

  • FRÉDÉRIC CHAPOTON
چکیده

The structure of a Hopf operad is defined on the vector spaces spanned by forests of leaf-labeled, rooted, binary trees. An explicit formula for the coproduct and its dual product is given, using a poset on forests.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Hopf algebra structures over operads

binary trees T with n leaves K · T This operad is called the operad Cmg of commutative magma algebras. It is not a regular operad. Similarly, for the free operad Γ generated by A(n) = K{αn} (n ≥ 2) with trivial action of Σn, we have Γ(M)(n) = ⊕ abstract reduced trees T with n leaves K · Treduced trees T with n leaves K · T The operad Cmgω := Γ might be called the operad of commutative tree alge...

متن کامل

Groups of tree-expanded series

In [5, 6] we introduced three Hopf algebras on planar binary trees related to the renormalization of quantum electrodynamics. One of them, the algebra H, is commutative, and is therefore the ring of coordinate functions of a proalgebraic group G. The other two algebras, H and H , are free non-commutative. Therefore their abelian quotients are the coordinate rings of two proalgebraic groups G an...

متن کامل

Coherent Unit Actions on Regular Operads and Hopf Algebras

J.-L. Loday introduced the concept of coherent unit actions on a regular operad and showed that such actions give Hopf algebra structures on the free algebras. Hopf algebras obtained this way include the Hopf algebras of shuffles, quasi-shuffles and planar rooted trees. We characterize coherent unit actions on binary quadratic regular operads in terms of linear equations of the generators of th...

متن کامل

A ] 1 3 O ct 2 00 5 COHERENT UNIT ACTIONS ON REGULAR OPERADS AND HOPF ALGEBRAS

Abstract. J.-L. Loday introduced the concept of coherent unit actions on a regular operad and showed that such actions give Hopf algebra structures on the free algebras. Hopf algebras obtained this way include the Hopf algebras of shuffles, quasi-shuffles and planar rooted trees. We characterize coherent unit actions on binary quadratic regular operads in terms of linear equations of the genera...

متن کامل

On the Connes-Kreimer construction of Hopf Algebras

We give a universal construction of families of Hopf P-algebras for any Hopf operad P. As a special case, we recover the Connes-Kreimer Hopf algebra of rooted trees.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002